Область повышенного давления в атмосфере с максимум в центре

Атмосферные явления на протяжении столетий были объектом исследования из-за своей значимости и влияния на все сферы жизни. Циклон и антициклон не являются исключениями. Понятие об этих погодных феноменах дает еще в школе география. Циклоны и антициклоны после такого краткого изучения для многих остаются загадкой. Воздушные массы и фронты являются ключевыми понятиями, которые помогут отобразить суть этих погодных явлений.

Воздушные массы

область повышенного давления в атмосфере с максимум в центреЧасто бывает так, что на протяжении многих тысяч километров в горизонтальном направлении воздух имеет очень похожие свойства. Эта масса и называется воздушной.

Воздушные массы делят на холодные, теплые и местные:

— холодной масса называется, если ее температура ниже, чем температура поверхности, над которой она находится;

— теплая — это такая воздушная масса, температура которой выше, чем температура той поверхности, что находится под ней;

— местная воздушная масса по температуре ничем не отличается от находящейся под ней поверхности.

Воздушные массы формируются над различными участками Земли, что приводит к особенностям в их свойствах. Если масса образовывается над Арктикой, то, соответственно, она будет называться арктической. Конечно же, такой воздух очень холодный, он может принести густые туманы или легкую дымку. Полярный воздух своим месторождением считает умеренные широты. Его свойства могут меняться в зависимости от того, какое время года наступило. Зимой полярные массы мало чем отличаются от арктических, а вот летом такой воздух может принести очень плохую видимость.

Тропические массы, пришедшие из тропиков и субтропиков, имеют высокую температуру и повышенную запыленность. Они являются виновниками дымки, которой охвачены предметы, если смотреть на них на расстоянии. Тропические массы, сформированные на континентальной части тропического пояса, приводят к пылевым вихрям, бурям и смерчам. Экваториальный воздух очень похож на тропический, но все эти свойства более выражены.

Фронты

область повышенного давления в атмосфере с максимум в центре

Если две воздушные массы, обладающие различной температурой, встречаются, образуется новое погодное явление — фронт, или поверхность раздела.

По характеру движения фронты делят на стационарные и подвижные.

Каждый существующий фронт разделяет между собой воздушные массы. Например, главный полярный фронт является воображаемым посредником между полярным и тропическим воздухом, главный арктический — между арктическим и полярным, и так далее.

Если теплая воздушная масса наползает на холодную, возникает теплый фронт. Для путешественников вход в такой фронт может предвещать либо проливной дождь, либо снег, который значительно снизит видимость. Когда же холодный воздух вклинивается под теплый, наблюдается образование холодного фронта. Корабли, попадающие в область холодного фронта, страдают от шквалов, ливней и гроз.

Бывает так, что воздушные массы не сталкиваются, а догоняют одна другую. В таких случаях образуется фронт окклюзии. Если роль догоняющей выполняет холодная масса, то называют такое явление фронтом холодной окклюзии, если же наоборот, то фронтом теплой окклюзии. Эти фронты несут ливневую погоду с сильными порывами ветра.

Циклоны

область повышенного давления в атмосфере с максимум в центре

Чтобы понять, что такое антициклон, нужно понимать, что такое циклон. Это область пониженного давления в атмосфере с минимальным показателем в центре. Его порождают два воздушных потока, имеющие разную температуру. Очень благоприятные условия для их образования создаются в фронтах. В циклоне воздух движется от его краев, где давление более высокое, к центру с низким давлением. В центре воздух будто бы выбрасывается вверх, что дает возможность образованию восходящих потоков.

По тому, как движется воздух в циклоне, легко можно определить, в каком именно полушарии он образовался. Если его направление совпадает с движением часовой стрелки, то это определенно Южное полушарие, если же против — это Северное полушарие.

Циклоны провоцируют такие погодные явления, как скопление облачных масс, сильные осадки, ветер и перепады температуры.

Тропический циклон

область повышенного давления в атмосфере с максимум в центре

От циклонов, образованных в умеренных широтах, отделяют циклоны, которые своим происхождением обязаны тропикам. Они имеют множество названий. Это и ураганы (Вест-Индия), и тайфуны (восток Азии), и просто циклоны (Индийский океан), и арканы (юг Индийского океана). Размеры таких вихрей колеблются от 100 до 300 миль, а диаметр центра — от 20 до 30 миль.

Ветер тут разгоняется до 100 км/час, и это характерно для всей области вихря, что кардинально отличает их от циклонов, образованных в умеренных широтах.

Верным признаком приближения такого циклона является рябь на воде. Причем она идет в противоположную сторону дующему ветру или ветру, который дул незадолго до этого.

Антициклон

область повышенного давления в атмосфере с максимум в центре

Область повышенного давления в атмосфере с максимумом в центре — это и есть антициклон. Давление на его краях более низкое, что позволяет воздуху устремляться от центра к периферии. Воздух, находящийся в центре, постоянно спускается и расходится к краям антициклона. Так образуются нисходящие потоки.

Антициклон является противоположностью циклону еще и потому, что в Северном полушарии он следует за часовой стрелкой, в Южном идет против нее.

Перечитав всю вышеизложенную информацию, с уверенностью можно сказать, что такое антициклон.

Интересным свойством антициклонов умеренных широт является то, что они как бы преследуют циклоны. В таком случае малоподвижное состояние вполне характеризует антициклон. Погода, образуемая этим вихрем, малооблачная и сухая. Ветра практически не наблюдается.

Азиатский антициклон

область повышенного давления в атмосфере с максимум в центре

Второе название этого явления — Сибирский максимум. Продолжительность его жизни — около 5 месяцев, а именно конец осени (ноябрь) — начало весны (март). Это не один антициклон, а несколько, которые очень редко уступают место циклонам. Высота ветров достигает 3 км.

Из-за географической среды (горы Азии) холодный воздух не может разойтись, что приводит к еще большему его охлаждению, температура около поверхности опускается до 60 градусов ниже нуля.

Говоря о том, что такое антициклон, можно с уверенностью сказать, что это атмосферный вихрь огромных размеров, приносящий ясную погоду без осадков.

Циклоны и антициклоны. Сходства и отличия

>

Для того чтобы разобраться лучше, что такое антициклон и циклон, нужно сравнить их. Определения и главные аспекты этих явлений мы выяснили. Остается открытым вопрос о том, чем отличаются циклоны и антициклоны. Таблица покажет эту разницу более четко.

Характеристика Циклон Антициклон
1. Размеры 300-5000 км в диаметре Может достигать 4000 км в диаметре
2. Скорость перемещения От 30 до 60 км/ч От 20 до 40 км/ч (кроме малоподвижных)
3. Места возникновения Везде, кроме экватора Над ледовым покровом и в тропиках
4. Причины возникновения Из-за естественного вращения Земли (сила Колиолиса), при дефиците массы воздуха. Из-за возникновения циклона, при избытке массы воздуха.
5. Давление В центре пониженное, на краях высокое. В центре повышенное, на краях низкое.
6. Направление вращения В Южном полушарии — по часовой стрелке, в Северном — против нее. В Южном — против часовой стрелки, в Северном — по часовой стрелке.
7. Погода Пасмурная, сильный ветер, множество осадков. Ясная или малооблачная, ветра и осадков нет.

Таким образом, мы видим, чем отличаются циклоны и антициклоны. Таблица показывает, что это не просто противоположности, природа их возникновения совершенно разная.

Схема антициклона (1915 г.) Ветер в Северном полушарии циркулирует по направлению движения часовой стрелки

Антицикло́н — область повышенного атмосферного давления с замкнутыми концентрическими изобарами на уровне моря и с соответствующим распределением ветра. В отличие от циклона ветер в Северном полушарии циркулирует по направлению движения часовой стрелки, а в Южном полушарии — в обратную сторону.

В низком антициклоне — холодном, изобары остаются замкнутыми только в самых нижних слоях тропосферы (до 1,5 км), а в средней тропосфере повышенное давление вообще не обнаруживается; возможно также наличие над таким антициклоном высотного циклона.

Высокий антициклон — теплый и сохраняет замкнутые изобары с антициклонической циркуляцией даже и в верхней тропосфере. Иногда антициклон бывает многоцентровым. Воздух в антициклоне в Северном полушарии движется, огибая центр по часовой стрелке (то есть отклоняясь от барического градиента вправо), в Южном полушарии — против часовой стрелки.

Для антициклона характерно преобладание ясной или малооблачной погоды. Вследствие охлаждения воздуха от земной поверхности в холодное время года и ночью в антициклоне возможно образование приземных инверсий и низких слоистых облаков (St) и туманов. Летом над сушей возможна умеренная дневная конвекция с образованием кучевых облаков. Конвекция с образованием кучевых облаков наблюдается и в пассатах на обращенной к экватору периферии субтропических антициклонов. При стабилизации антициклона в низких широтах возникают мощные, высокие и теплые субтропические антициклоны.

Стабилизация антициклонов происходит также в средних и в полярных широтах. Высокие малоподвижные антициклоны, нарушающие общий западный перенос средних широт, называются блокирующими.

Синонимы: область высокого давления, область повышенного давления, барический максимум.

Антициклоны достигают размера несколько тысяч километров в поперечнике. В центре антициклона давление обычно 1020—1030 мбар, но может достигать 1070—1080 мбар. Как и циклоны, антициклоны перемещаются в направлении общего переноса воздуха в тропосфере, то есть с запада на восток, отклоняясь при этом к низким широтам. Средняя скорость перемещения антициклона составляет около 30 км/ч в Северном полушарии и около 40 км/ч в Южном, но нередко антициклон надолго принимает малоподвижное состояние.

Признаки антициклона:

  • Ясная или малооблачная погода
  • Отсутствие ветра
  • Отсутствие осадков
  • Устойчивый характер погоды (заметно не меняется во времени, пока существует антициклон)

В летний период антициклон приносит жаркую малооблачную погоду, в результате чего возможны лесные пожары, что приводит к образованию сильного смога. В зимний период антициклон приносит сильные морозы, иногда также возможен морозный туман.

Важной особенностью антициклонов является образование их на определённых участках. В частности, над ледовыми полями формируются антициклоны. И чем мощнее ледовый покров, тем сильнее выражен антициклон; именно поэтому антициклон над Антарктидой очень мощный, а над Гренландией маломощный, над Арктикой — средний по выраженности. Мощные антициклоны также развиваются в тропическом поясе.

Евразия служит интересным примером сезонных изменений в атмосфере. В летнее время над её центральными районами формируется область низкого давления — циклон, куда засасывается воздух с соседних океанов. Особенно сильно это проявляется в Южной и Восточной Азии: бесконечная вереница циклонов несет влажный тёплый воздух вглубь материка. Зимой ситуация резко меняется: над центром Евразии формируется область высокого давления — антициклон (Азиатский максимум), холодные и сухие ветры из центра которого (Монголия, Тыва, Юг Сибири), расходящиеся по часовой стрелке, разносят холод вплоть до восточных окраин материка и вызывают ясную, морозную, практически бесснежную погоду на Дальнем Востоке и Северном Китае. В западной части Евразии влияние этого антициклона слабее и наблюдается значительно реже. Резкие снижения температуры возможны только, если центр антициклона переместится к западу, поскольку при таком перемещении антициклона направление ветра в точке наблюдения изменится с южного на северное. Подобные процессы часто наблюдаются на Восточно-Европейской равнине.

Самый большой антициклон в Солнечной системе — Большое красное пятно на Юпитере.

Блокирующий антициклон

Блокирующий антициклон — практически неподвижный мощный антициклон, который обладает способностью не пропускать другие воздушные массы на занятую собой территорию. Средний срок жизни такого антициклона — от трёх до пяти суток, лишь 1 % антициклонов дотягивает до 15 суток.

Однако в 1972, 1997, 1999, 2002, 2010, 2014 и 2015 годах антициклоны в летнее время (на Европейской территории России) существовали во всех случаях больше месяца (в 2010 году — почти 2 месяца), вызвав катастрофическую засуху и сильнейшую жару (в отдельные дни температура воздуха в Москве превышала +32-33 градусов, а в конце июля-начале августа 2010 г. и +37 градусов), а также лесные пожары (как закономерное явление). Аналогичная ситуация была в 2012 году в Сибири, где блокирующий антициклон просуществовал почти три месяца.

Стадии развития антициклонов

Начальная стадия развития антициклона

В начальной стадии развития приземный антициклон располагается под тыловой частью высотной барической ложбины, а барический гребень на высотах сдвинут в тыловую часть относительно приземного барического центра. Над приземным центром антициклона в средней тропосфере располагается густая система сходящихся изогипс. Скорости ветра над приземным центром антициклона и несколько правее в средней тропосфере достигают 70-80 км/ч. Термобарическое поле благоприятствует дальнейшему развитию антициклона.

При таких скоростях в области сходимости воздушных течений происходит значительное отклонение ветра от градиентного (то есть движение становится нестационарным). Развиваются нисходящие движения воздуха, давление растет, в результате чего антициклон усиливается.

На приземной карте погоды антициклон очерчивается одной изобарой. Разность давления между центром и периферией антициклона составляет 5-10 мб. На высоте 1-2 км антициклонический вихрь не выявляется. Область динамического роста давления, обусловленная сходимостью изогипс, распространяется на всё пространство, занятое приземным антициклоном.

Приземный центр антициклона располагается практически под термической ложбиной. Изотермы средней температуры слоя в передней части относительно приземного центра антициклона отклоняются от изогипс влево, что соответствует адвекции холода в нижней тропосфере. В тыловой части относительно приземного центра располагается термический гребень, и наблюдается адвекция тепла.

Адвективный (термический) рост давления у земной поверхности охватывает переднюю часть антициклона, где адвекция холода особенно заметна. В тылу антициклона, где имеет место адвекция тепла, наблюдается адвективное падение давления. Линия нулевой адвекции, проходящая через гребень, делит область входа ВФЗ на две части: переднюю, где имеет место адвекция холода (адвективное повышение давления), и тыловую, где имеет место адвекция тепла (адвективное падение давления).

Таким образом, суммарно, область роста давления охватывает центральную и переднюю части антициклона. Наибольший рост давления у поверхности Земли (где совпадают области адвективного и динамического роста давления) отмечается в передней части антициклона. В тыловой части, где динамический рост накладывается на адвективное падение (адвекция тепла) суммарный рост тепла у поверхности Земли будет ослаблен. Однако, до тех пор, пока область значительного динамического роста давления занимает центральную часть приземного антициклона, где адвективное изменение давления равно нулю, будет иметь место усиление возникшего антициклона.

Итак, в результате усиливающего динамического роста давления в передней части входа ВФЗ происходит деформация термобарического поля, приводящая к образованию высотного гребня. Под этим гребнем у Земли и оформляется самостоятельный центр антициклона. На высотах, где повышение температуры вызывает рост давления, область роста давления смещается в тыловую часть антициклона, в сторону области повышения температуры.

Стадия молодого антициклона

Термобарическое поле молодого антициклона в общих чертах соответствует структуре предыдущей стадии: барический гребень на высотах по отношению к приземному центру антициклона заметно сдвинут в тыловую часть антициклона, а над его передней частью располагается барическая ложбина.

Центр антициклона у поверхности Земли располагается под передней частью барического гребня в зоне наибольшего сгущения сходящихся по потоку изогипс, антициклоническая кривизна которых вдоль потока уменьшается. При такой структуре изогипс условия для дальнейшего усиления антициклона наиболее благоприятны.

Сходимость изогипс над передней частью антициклона благоприятствует динамическому росту давления. Здесь также наблюдается адвекция холода, что также благоприятствует адвективному росту давления.

В тыловой части антициклона наблюдается адвекция тепла. Антициклон является термически асимметричным барическим образованием. Термический гребень несколько отстает от барического гребня. Линии нулевого адвективного и динамического изменений давления в этой стадии начинают сближаться.

У поверхности Земли отмечается усиление антициклона — он имеет несколько замкнутых изобар. С высотой антициклон быстро исчезает. Обычно во второй стадии развития замкнутый центр выше поверхности АТ700 не прослеживается.

Стадия молодого антициклона завершается переходом его в стадию максимального развития.

Стадия максимального развития антициклона

Антициклон является мощным барическим образованием с высоким давлением в приземном центре и расходящейся системой приземных ветров. По мере его развития вихревая структура распространяется всё выше и выше. На высотах над приземным центром ещё существует густая система сходящихся изогипс с сильными ветрами и значительными градиентами температуры.

В нижних слоях тропосферы антициклон по-прежнему, располагается в массах холодного воздуха. Однако, по мере заполнения антициклона однородным тёплым воздухом на высотах появляется замкнутый центр высокого давления. Линии нулевого адвективного и динамического изменений давления проходят через центральную часть антициклона. Это указывает на то, что динамический рост давления в центре антициклона прекратился, а область наибольшего роста давления перешла на его периферию. С этого момента начинается ослабление антициклона.

Стадия разрушения антициклона

В четвертой стадии развития антициклон является высоким барическим образованием с квазивертикальной осью. Замкнутые центры высокого давления прослеживаются на всех уровнях тропосферы, координаты высотного центра практически совпадают с координатами центра у Земли.

С момента усиления антициклона температура воздуха на высотах повышается. В системе антициклона происходит опускание воздуха, и, следовательно, его сжатие и нагревание. В тыловой части антициклона происходит поступление тёплого воздуха (адвекция тепла) в его систему. В результате продолжающейся адвекции тепла и адиабатического нагревания воздуха антициклон заполняется однородным тёплым воздухом, а область наибольших горизонтальных контрастов температуры перемещается на периферию. На над приземным центром располагается очаг тепла.

Антициклон становится термически симметричным барическим образованием. Соответственно уменьшению горизонтальных градиентов термобарического поля тропосферы, адвективные и динамические изменения давления в области антициклона значительно ослабевают.

Из-за расходимости воздушных течений в приземном слое атмосферы давление в системе антициклона понижается, и он постепенно разрушается, что на начальном этапе разрушения более заметно у земной поверхности..

Некоторые особенности развития антициклонов

Эволюция циклонов и антициклонов существенно различается с точки зрения деформации термобарического поля. Возникновение и развитие циклона сопровождается возникновением и развитием термической ложбины, антициклона — возникновением и развитием термического гребня.

Для последних стадий развития барических образований характерно совмещение барических и термических центров, изогипсы и становятся практически параллельными, замкнутый центр прослеживается на высотах, причём, координаты высотного и приземного центров практически совпадают совмещаются (говорят о квазивертикальности высотной оси барического образования). Деформационные различия термобарического поля при формировании и развитии циклона и антициклона приводят к тому, что циклон постепенно заполняется холодным воздухом, антициклон — тёплым воздухом.

Не все возникающие циклоны и антициклоны проходят четыре стадии развития. В каждом отдельном случае могут встретиться те или другие отклонения от классической картины развития.

Нередко, возникающие у поверхности Земли барические образования не имеют условий для дальнейшего развития и могут исчезнуть уже в начале своего существования. С другой стороны, имеют место ситуации, когда старое затухающее барическое образование возрождается и активизируется. Такой процесс называют регенерацией барических образований.

Но если у различных циклонов наблюдается более определённое сходство в этапах развития, то антициклоны, по сравнению с циклонами, имеют гораздо большие отличия в развитии и форме. Нередко антициклоны проявляются как вялые и пассивные системы, которые заполняют пространство между гораздо более активными циклоническими системами. Иногда антициклон может достичь значительной интенсивности, но такое развитие в большинстве связано с циклоническим развитием в соседних областях.

Рассматривая структуру и общее поведение антициклонов, можно разделить их на следующие классы (по Хромову С. П.).

  • Промежуточные антициклоны — это быстро движущиеся области повышенного давления между отдельными циклонами одной и той же серии, возникающих на одном и том же главном фронте — по большей части имеют вид гребней без замкнутых изобар, либо с замкнутыми изобарами по горизонтальным размерам того же порядка, что и движущиеся циклоны. Развиваются внутри холодного воздуха.
  • Заключительные антициклоны — заключающие развитие серии циклонов, возникающих на одном и том же главном фронте. Они также развиваются внутри холодного воздуха, но обычно имеют несколько замкнутых изобар и могут иметь значительные горизонтальные размеры. Имеют тенденцию по мере развития к приобретению малоподвижного состояния.
  • Стационарные антициклоны умеренных широт, то есть длительно существующие малоподвижные антициклоны в арктическом или полярном воздухе, горизонтальные размеры которых сравнимы иногда со значительной частью материка. Обычно это зимние антициклоны над материками и являются, главным образом, результатом развития антициклонов второго типа (реже — первого).
  • Субтропические антициклоны — длительно существующие малоподвижные антициклоны, наблюдающиеся над океаническими поверхностями. Эти антициклоны периодически усиливаются вторжениями из умеренных широт полярного воздуха с подвижными заключительными антициклонами. В тёплый сезон субтропические антициклоны хорошо выражены на средних месячных картах только над океанами (над континентами располагаются размытые области пониженного давления). В холодный сезон субтропические антициклоны имеют тенденцию сливаться с холодными антициклонами над континентами.
  • Арктические антициклоны — более или менее устойчивые области повышенного давления в арктическом бассейне. Являются холодными, поэтому вертикальная мощность их ограничивается нижней тропосферой. В верхней части тропосферы они сменяются полярной депрессией. В возникновении арктических антициклонов большую роль играет охлаждение от подстилающей поверхности, то есть они являются местными антициклонами.

Высота, до которой простирается антициклон, зависит от температурных условий в тропосфере.

Подвижные и заключительные антициклоны обладают низкими температурами в нижних слоях атмосферы и температурной асимметрией в вышележащих. Они относятся к средним или низким барическим образованиям.

Высота стационарных антициклонов умеренных широт растет по мере их стабилизации, сопровождающейся потеплением атмосферы. Чаще всего это высокие антициклоны, с замкнутыми изогипсами в верхней тропосфере. Зимние антициклоны над сильно выхоложенной сушей, например, над Сибирью, могут быть низкими или средними, поскольку нижние слои тропосферы здесь очень выхоложены.

Субтропические антициклоны являются высокими — тропосфера в них тёплая.

Арктические антициклоны, являющиеся, в основном, термическими, — низкие.

Нередко высокие тёплые и малоподвижные антициклоны, развивающиеся в средних широтах, на длительное время (порядка недели и более) создают макромасштабные нарушения зонального переноса и отклоняет траектории подвижных циклонов и антициклонов от западно-восточного направления. Такие антициклоны носят название блокирующих антициклонов. Центральные циклоны вместе с блокирующими антициклонами определяют направление основных течений общей циркуляции в тропосфере.

Высокие и тёплые антициклоны и холодные циклоны являются, соответственно, очагами тепла и холода в тропосфере. В районах между этими очагами создаются новые фронтальные зоны, усиливаются контрасты температуры и снова возникают атмосферные вихри, которые проходят тот же цикл жизни.

Антициклон в районе Онежского озера на синоптической карте России

1 мая 1890 года

География постоянных антициклонов

  • Азорский антициклон
  • Антарктический антициклон
  • Бермудский антициклон
  • Гавайский антициклон
  • Гренландский антициклон
  • Канадский антициклон
  • Северотихоокеанский антициклон
  • Сибирский антициклон
  • Южно-Атлантический антициклон
  • Южно-Индийский антициклон
  • Южно-Тихоокеанский антициклон

Примечания

Ссылки

  • Антициклон в БСЭ.
  • Антициклон в «Метеословаре» портала «Про погоду».
  • Антициклон в Московском центре Интернет-образования.
  • Антициклон в библиотеке портала www.pogoda.ru

См. также

  • Циклон
  • Геострофический ветер
  • Барический закон ветра

Схема антициклона,

1915

. Ветер движется по часовой стрелке

Антициклон — область повышенного атмосферного давления с замкнутыми концентрическими изобарами на уровне моря и с соответствующим распределением ветра. В низком антициклоне — холодном, изобары остаются замкнутыми только в самых нижних слоях тропосферы (до 1,5 км), а в средней тропосфере повышенное давление вообще не обнаруживается; возможно также наличие над таким антициклоном высотного циклона.

Высокий антициклон — теплый и сохраняет замкнутые изобары с антициклонической циркуляцией даже и в верхней тропосфере.

Иногда антициклон бывает многоцентровым. Воздух в антициклоне в северном полушарии движется, огибая центр по часовой стрелке (то есть отклоняясь от барического градиента вправо), в южном полушарии — против часовой стрелки. Для антициклона характерно преобладание ясной или малооблачной погоды. Вследствие охлаждения воздуха от земной поверхности в холодное время года и ночью в антициклоне возможно образование приземных инверсий и низких слоистых облаков (St) и туманов. Летом над сушей возможна умеренная дневная конвекция с образованием кучевых облаков. Конвекция с образованием кучевых облаков наблюдается и в пассатах на обращенной к экватору периферии субтропических антициклонов. При стабилизации антициклона в низких широтах возникают мощные, высокие и теплые субтропические антициклоны. Стабилизация антициклонов происходит также в средних и в полярных широтах. Высокие малоподвижные антициклоны, нарушающие общий западный перенос средних широт, называются блокирующими.

Синонимы: область высокого давления, область повышенного давления, барический максимум.

Антициклоны достигают размера несколько тысяч километров в поперечнике. В центре антициклона давление обычно 1020—1030 мбар, но может достигать 1070—1080 мбар. Как и циклоны, антициклоны перемещаются в направлении общего переноса воздуха в тропосфере, то есть с запада на восток, отклоняясь при этом к низким широтам. Средняя скорость перемещения антициклона составляет около 30 км/ч в Северном полушарии и около 40 км/ч в Южном, но нередко антициклон надолго принимает малоподвижное состояние.

Признаки антициклона:

  • Ясная или малооблачная погода
  • Отсутствие ветра
  • Отсутствие осадков
  • Устойчивый характер погоды (заметно не меняется во времени, пока существует антициклон)

В летний период антициклон приносит жаркую малооблачную погоду. В зимний период антициклон приносит сильные морозы, иногда также возможен морозный туман.

Важной особенностью антициклонов является образование их на определённых участках. В частности, над ледовыми полями формируются антициклоны. И чем мощнее ледовый покров, тем сильнее выражен антициклон; именно поэтому антициклон над Антарктидой очень мощный, а над Гренландией маломощный, над Арктикой — средний по выраженности. Мощные антициклоны также развиваются в тропическом поясе.

Интересным примером резких изменений в формировании различных воздушных масс служит Евразия. В летнее время над её центральными районами формируется область низкого давления, куда засасывается воздух с соседних океанов. Особенно сильно это проявляется в Южной и Восточной Азии: бесконечная вереница циклонов несет влажный тёплый воздух вглубь материка. Зимой ситуация резко меняется: над центром Евразии формируется область высокого давления — Азиатский максимум, холодные и сухие ветры из центра которого (Монголия, Тыва, Юг Сибири), расходящиеся по часовой стрелке, разносят холод вплоть до восточных окраин материка и вызывают ясную, морозную, практически бесснежную погоду на Дальнем Востоке, в Северном Китае. В западном направлении антициклоны влияют менее интенсивно. Резкие снижения температуры возможны только, если центр антициклона переместится к западу от точки наблюдения, потому что ветер меняет направление с южного на северный. Подобные процессы часто наблюдаются на Восточно-Европейской равнине.

Крупнейший антициклон в Солнечной системе — Большое красное пятно на Юпитере.

Блокирующий антициклон

Блокирующий антициклон — практически неподвижный мощный антициклон, который обладает способностью не пропускать другие воздушные массы на занятую собой территорию. Средний срок жизни такого антициклона — от трёх до пяти суток, лишь 1 % антициклонов дотягивает до 15 суток.

Однако в 1972 году и 2010 году антициклон в летнее время (на Европейской территории России) существовал в обоих случаях практически два месяца, вызвав катастрофическую засуху и сильнейшую жару, а также лесные пожары (как закономерное явление). Аналогичная ситуация повторилась в 2012 году в Сибири, где блокирующий антициклон просуществовал почти три месяца.

Стадии развития антициклонов

В жизни антициклона, так же, как и циклона, выделяют несколько стадий развития:

  1. Начальная стадия (стадия возникновения),   2. Стадия молодого антициклона,   3. Стадия максимального развития антициклона,   4. Стадия разрушения антициклона.  

Наиболее благоприятные условия для развития антициклона складываются, когда его приземный центр располагается под тыловой частью высотной барической ложбины на АТ500, в зоне значительных горизонтальных градиентов геопотенциала (высотная фронтальная зона). Усиливающим эффектом является сходимость изогипс при их циклонической кривизне изогипс, которая по потоку увеличивается. Здесь происходит накопление воздушных масс, что обусловливает динамический рост давления.

Давление у Земли повышается при понижении температуры в вышележащем слое атмосферы (адвекция холода). Наибольшая адвекция холода наблюдается за холодным фронтом в тылу циклона или в передней части усиливающихся антициклонов, где происходит адвективное повышение давления и где формируется область нисходящих движений воздуха.

Обычно стадии возникновения антициклона и молодого антициклона объединяют в одну из-за небольших отличий в структуре термобарического поля.

В начале своего развития антициклон имеет обычно вид отрога, возникшего в тылу циклона. На высотах антициклонические вихри в начальной стадии не прослеживаются. Стадия максимального развития антициклона характеризуется наибольшим давлением в центре. В последней стадии антициклон разрушается. У поверхности Земли в центре антициклона давление понижается.

Начальная стадия развития антициклона

В начальной стадии развития приземный антициклон располагается под тыловой частью высотной барической ложбины, а барический гребень на высотах сдвинут в тыловую часть относительно приземного барического центра. Над приземным центром антициклона в средней тропосфере располагается густая система сходящихся изогипс. (рис. 12.7). Скорости ветра над приземным центром антициклона и несколько правее в средней тропосфере достигают 70-80 км/ч. Термобарическое поле благоприятствует дальнейшему развитию антициклона.

Согласно анализу уравнения тенденции вихря скорости ∂∂κκHtgmHHHHnsnnsnns=++l(), здесь ∂∂Ht>0 (∂Ω∂t0), имеют место сходимость изогипс (H>0) при их циклонической кривизне (>0), которая увеличивается по потоку (Hnnsκκs>0).

При таких скоростях в области сходимости воздушных течений происходит значительное отклонение ветра от градиентного (т.е. движение становится нестационарным). Развиваются нисходящие движения воздуха, давление растет, в результате чего антициклон усиливается.

На приземной карте погоды антициклон очерчивается одной изобарой. Разность давления между центром и периферией антициклона составляет 5-10 мб. На высоте 1-2 км антициклонический вихрь не выявляется. Область динамического роста давления, обусловленная сходимостью изогипс, распространяется на всё пространство, занятое приземным антициклоном.

Приземный центр антициклона располагается практически под термической ложбиной. Изотермы средней температуры слоя в передней части относительно приземного центра антициклона отклоняются от изогипс влево, что соответствует адвекции холода в нижней тропосфере. В тыловой части относительно приземного центра располагается термический гребень, и наблюдается адвекция тепла

Адвективный (термический) рост давления у земной поверхности охватывает переднюю часть антициклона, где адвекция холода особенно заметна. В тылу антициклона, где имеет место адвекция тепла, наблюдается адвективное падение давления. Линия нулевой адвекции, проходящая через гребень, делит область входа ВФЗ на две части: переднюю, где имеет место адвекция холода (адвективное повышение давления), и тыловую, где имеет место адвекция тепла (адвективное падение давления).

Таким образом, суммарно, область роста давления охватывает центральную и переднюю части антициклона. Наибольший рост давления у поверхности Земли (где совпадают области адвективного и динамического роста давления) отмечается в передней части антициклона. В тыловой части, где динамический рост накладывается на адвективное падение (адвекция тепла) суммарный рост у поверхности Земли будет ослаблен. Однако, до тех пор, пока область значительного динамического роста давления занимает центральную часть приземного антициклона, где адвективное изменение давления равно нулю, будет иметь место усиление возникшего антициклона.

Итак, в результате усиливающего динамического роста давления в передней части входа ВФЗ происходит деформация термобарического поля, приводящая к образованию высотного гребня. Под этим гребнем у Земли и оформляется самостоятельный центр антициклона. На высотах, где повышение температуры вызывает рост давления, область роста давления смещается в тыловую часть антициклона, в сторону области повышения температуры.

Стадия молодого антициклона

Термобарическое поле молодого антициклона в общих чертах соответствует структуре предыдущей стадии: барический гребень на высотах по отношению к приземному центру антициклона заметно сдвинут в тыловую часть антициклона, а над его передней частью располагается барическая ложбина.

Центр антициклона у поверхности Земли располагается под передней частью барического гребня в зоне наибольшего сгущения сходящихся по потоку изогипс, антициклоническая кривизна которых вдоль потока уменьшается. При такой структуре изогипс условия для дальнейшего усиления антициклона наиболее благоприятны.

Сходимость изогипс над передней частью антициклона благоприятствует динамическому росту давления. Здесь также наблюдается адвекция холода, что также благоприятствует адвективному росту давления.

В тыловой части антициклона наблюдается адвекция тепла. Антициклон является термически асимметричным барическим образованием. Термический гребень несколько отстает от барического гребня. Линии нулевого адвективного и динамического изменений давления в этой стадии начинают сближаться.

У поверхности Земли отмечается усиление антициклона – он имеет несколько замкнутых изобар. С высотой антициклон быстро исчезает. Обычно во второй стадии развития замкнутый центр выше поверхности АТ700 не прослеживается.

Стадия молодого антициклона завершается переходом его в стадию максимального развития.

Стадия максимального развития антициклона

Антициклон является мощным барическим образованием с высоким давлением в приземном центре и расходящейся системой приземных ветров. По мере его развития вихревая структура распространяется всё выше и выше (рис. 12.8). На высотах над приземным центром ещё существует густая система сходящихся изогипс с сильными ветрами и значительными градиентами температуры.

В нижних слоях тропосферы антициклон по-прежнему, располагается в массах холодного воздуха. Однако, по мере заполнения антициклона однородным тёплым воздухом на высотах появляется замкнутый центр высокого давления. Линии нулевого адвективного и динамического изменений давления проходят через центральную часть антициклона. Это указывает на то, что динамический рост давления в центре антициклона прекратился, а область наибольшего роста давления перешла на его периферию. С этого момента начинается ослабление антициклона.

Стадия разрушения антициклона

В четвертой стадии развития антициклон является высоким барическим образованием с квазивертикальной осью. Замкнутые центры высокого давления прослеживаются на всех уровнях тропосферы, координаты высотного центра практически совпадают с координатами центра у Земли (рис. 12.9).

С момента усиления антициклона температура воздуха на высотах повышается. В системе антициклона происходит опускание воздуха, и, следовательно, его сжатие и нагревание. В тыловой части антициклона происходит поступление тёплого воздуха (адвекция тепла) в его систему. В результате продолжающейся адвекции тепла и адиабатического нагревания воздуха антициклон заполняется однородным тёплым воздухом, а область наибольших горизонтальных контрастов температуры перемещается на периферию. На над приземным центром располагается очаг тепла.

Антициклон становится термически симметричным барическим образованием. Соответственно уменьшению горизонтальных градиентов термобарического поля тропосферы, адвективные и динамические изменения давления в области антициклона значительно ослабевают.

Из-за расходимости воздушных течений в приземном слое атмосферы давление в системе антициклона понижается, и он постепенно разрушается, что на начальном этапе разрушения более заметно у земной поверхности.

Некоторые особенности развития антициклонов

Эволюция циклонов и антициклонов существенно различается с точки зрения деформации термобарического поля. Возникновение и развитие циклона сопровождается возникновением и развитием термической ложбины, антициклона – возникновением и развитием термического гребня.

Для последних стадий развития барических образований характерно совмещение барических и термических центров, изогипсы и становятся практически параллельными, замкнутый центр прослеживается на высотах, причём, координаты высотного и приземного центров практически совпадают совмещаются (говорят о квазивертикальности высотной оси барического образования). Деформационные различия термобарического поля при формировании и развитии циклона и антициклона приводят к тому, что циклон постепенно заполняется холодным воздухом, антициклон – тёплым воздухом.

Не все возникающие циклоны и антициклоны проходят четыре стадии развития. В каждом отдельном случае могут встретиться те или другие отклонения от классической картины развития. Нередко, возникающие у поверхности Земли барические образования не имеют условий для дальнейшего развития и могут исчезнуть уже в начале своего существования. С другой стороны, имеют место ситуации, когда старое затухающее барическое образование возрождается и активизируется. Такой процесс называют регенерацией барических образований.

Но если у различных циклонов наблюдается более определённое сходство в этапах развития, то антициклоны, по сравнению с циклонами, имеют гораздо большие отличия в развитии и форме. Нередко антициклоны проявляются как вялые и пассивные системы, которые заполняют пространство между гораздо более активными циклоническими системами. Иногда антициклон может достичь значительной интенсивности, но такое развитие в большинстве связано с циклоническим развитием в соседних областях.

Рассматривая структуру и общее поведение антициклонов, можно разделить их на следующие классы. (по Хромову С.П.).

  • Промежуточные антициклоны – это быстро движущиеся области повышенного давления между отдельными циклонами одной и той же серии, возникающих на одном и том же главном фронте – по большей части имеют вид гребней без замкнутых изобар, либо с замкнутыми изобарами по горизонтальным размерам того же порядка, что и движущиеся циклоны. Развиваются внутри холодного воздуха.
  • Заключительные антициклоны – заключающие развитие серии циклонов, возникающих на одном и том же главном фронте. Они также развиваются внутри холодного воздуха, но обычно имеют несколько замкнутых изобар и могут иметь значительные горизонтальные размеры. Имеют тенденцию по мере развития к приобретению малоподвижного состояния.
  • Стационарные антициклоны умеренных широт, т.е. длительно существующие малоподвижные антициклоны в арктическом или полярном воздухе, горизонтальные размеры которых сравнимы иногда со значительной частью материка. Обычно это зимние антициклоны над материками и являются, главным образом, результатом развития антициклонов второго тира (реже – первого).
  • Субтропические антициклоны – длительно существующие малоподвижные антициклоны, наблюдающиеся над океаническими поверхностями. Эти антициклоны периодически усиливаются вторжениями из умеренных широт полярного воздуха с подвижными заключительными антициклонами. В тёплый сезон субтропические антициклоны хорошо выражены на средних месячных картах только над океанами (над континентами располагаются размытые области пониженного давления). В холодный сезон субтропические антициклоны имеют тенденцию сливаться с холодными антициклонами над континентами.
  • Арктические антициклоны – более или менее устойчивые области повышенного давления в арктическом бассейне. Являются холодными, поэтому вертикальная мощность их ограничивается нижней тропосферой. В верхней части тропосферы они сменяются полярной депрессией. В возникновении арктических антициклонов большую роль играет охлаждение от подстилающей поверхности, т.е. они являются местными антициклонами.

Высота, до которой простирается антициклон, зависит от температурных условий в тропосфере. Подвижные и заключительные антициклоны обладают низкими температурами в нижних слоях атмосферы и температурной асимметрией в вышележащих. Они относятся к средним или низким барическим образованиям.

Высота стационарных антициклонов умеренных широт растет по мере их стабилизации, сопровождающейся потеплением атмосферы. Чаще всего это высокие антициклоны, с замкнутыми изогипсами в верхней тропосфере. Зимние антициклоны над сильно выхоложенной сушей, например, над Сибирью, могут быть низкими или средними, поскольку нижние слои тропосферы здесь очень выхоложены.

Субтропические антициклоны являются высокими – тропосфера в них тёплая.

Арктические антициклоны, являющиеся, в основном, термическими, – низкие.

Нередко высокие тёплые и малоподвижные антициклоны, развивающиеся в средних широтах, на длительное время (порядка недели и более) создают макромасштабные нарушения зонального переноса и отклоняет траектории подвижных циклонов и антициклонов от западно-восточного направления. Такие антициклоны носят название блокирующих антициклонов. Центральные циклоны вместе с блокирующими антициклонами определяют направление основных течений общей циркуляции в тропосфере.

Высокие и тёплые антициклоны и холодные циклоны являются, соответственно, очагами тепла и холода в тропосфере. В районах между этими очагами создаются новые фронтальные зоны, усиливаются контрасты температуры и снова возникают атмосферные вихри, которые проходят тот же цикл жизни.

Антициклон в районе Онежского озера на синоптической карте России

1 мая 1890 года

География постоянных антициклонов

  • Азорский антициклон
  • Антарктический антициклон
  • Бермудский антициклон
  • Гавайский антициклон
  • Гренландский антициклон
  • Канадский антициклон
  • Северотихоокеанский антициклон
  • Сибирский антициклон
  • Южно-Атлантический антициклон
  • Южно-Индийский антициклон
  • Южно-Тихоокеанский антициклон

Источники и ссылки

  • Антициклон в БСЭ.
  • Антициклон в «Метеословаре» портала «Про погоду».
  • Антициклон в Московском центре Интернет-образования.
  • Антициклон в библиотеке портала www.pogoda.ru

См. также

  • Циклон
  • Геострофический ветер

Вес атмосферы в миллион раз меньше веса Земли, однако давление, оказываемое атмосферой на земную поверхность, весьма значительно и составляет 1033,3 г на каждый квадратный сантиметр поверхности на уровне Океана (10333 кг на 1 кв. м). Это давление уравновешивается давлением столбика ртути высотой 760 мм, сечением 1 кв. см при температуре 0°, на том же уровне, на широте 45°. Давление 760 мм рт. ст. принято считать нормальным атмосферным давлением. Атмосферное давление можно выразить в динах. Нормальное атмосферное давление составляет 1 013 250 дин/см2. Давление в 1 000000 дин на 1 кв. см — 1 бар, 0,001 бара — 1 миллибар. 1013 250 дин/см2 соответствует 1013,25 миллибара. Миллибар в настоящее время является общепринятой единицей измерения давления. 100 мб соответствуют 750 мм рт. ст.; 1 мб равен 0,75, или 3/4 мм рт. ст.; 1 мм рт. ст. равен 1,33, или 4/3 мб.
С высотой давление убывает, так как мощность вышележащего слоя атмосферы становится меньше. Расстояние в метрах, на которое надо подняться или опуститься, для того, чтобы атмосферное давление изменилось на 1 мб, называют барометрической (барической) ступенью. Величина барометрической ступени различна: при температуре 0° и давлении 1000 мб она составляет 8 м, при той же температуре и давлении 800 мб — 10 м, при давлении 600 мб — 13,3 м и при давлении 400 мб — 20 м.
На практике часто требуется привести давление, отмеченное в разных пунктах, к общему уровню. Для этого можно воспользоваться (при небольшой разности высот пунктов — не более 1000 м) формулой Бабине (упрощенной барометрической формулой):

Наблюдения показывают, что давление во времени изменяется постоянно и в широких пределах. Самое высокое давление на поверхности Земли, приведенное к уровню моря, отмечено над Азией (1080 мб), самое низкое зарегистрировано над Тихим океаном (887 мб). Колебания давления в одном месте могут иметь большую амплитуду. Например, в Москве (156 м над уровнем моря) зарегистрированный минимум давления составляет 944 мб, а максимум 1037 мб.
Изменения давления вызываются главным образом неравномерным нагреванием воздуха от земной поверхности и носят преимущественно непериодический характер. На фоне непериодических изменений выявляются периодические колебания давления — суточные и годовые.
Суточный ход давления отличается плавными колебаниями и имеет два максимума (в 10 и в 22 часа по местному времени) и два минимума I (в 4 и в 16 часов). Эти колебания давления особенно хорошо выражены в экваториальных и тропических широтах (3—4 мб), по направлению к полюсам амплитуда их уменьшается (до 0,3 мб).
Годовые амплитуды колебаний давления в направлении от низких широт к высоким увеличиваются. При этом над материками колебания давления в течение года оказываются более значительными, чем над океанами. Годовой ход давления над материками и океанами различен. В первом случае максимум давления отмечается зимой, во втором — летом. С высотой амплитуды годовых колебаний давления увеличиваются, а годовой ход давления становится обратным: максимум над материками приходится на лето, минимум — на зиму.
Распределение давления в слое атмосферы наглядно можно показать на рисунке с помощью поверхностей, проведенных через точки с одинаковым давлением и называемых изобарическими поверхностями.
Если бы давление на уровне Океана было везде одинаково и если бы оно одинаково изменялось с высотой, изобарические поверхности располагались бы горизонтально и параллельно друг другу. В действительности давление изменяется не только в вертикальном, но и в горизонтальном направлении, и изобарические поверхности имеют разнообразную форму. В области повышенного давления образуется система криволинейных изобарических поверхностей, обращенных выпуклостью вверх. В области пониженного давления криволинейные изобарические поверхности обращены выпуклостью вниз.
Линии, образующиеся от пересечения изобарических поверхностей с поверхностью Океана (или с любой другой поверхностью), называются изобарами. Изобары соединяют точки с одинаковым давлением. Различным формам изобарических поверхностей соответствуют определенные формы изобар.
Прямолинейные изобары возникают от пересечения поверхности параллельными изобарическими поверхностями под некоторым углом. Замкнутые изобары образуются при пересечении поверхности выпуклыми или вогнутыми чашеобразно изобарическими поверхностями.

Система замкнутых изобар с пониженным давлением в центре — барический минимум. Система замкнутых изобар с повышенным давлением в центре — барический максимум. Незамкнутая система изобар, соответствующая вытянутому языку пониженного давления, — барическая ложбина. Незамкнутая система изобар, соответствующая вытянутому языку повышенного давления, — барический гребень. Между двумя барическими максимумами и двумя минимумами, расположенными крест-накрест, образуется система незамкнутых изобар, называемая седловиной.
Густота расположения изобар зависит от изменения давления на единицу расстояния. Изменение давления в горизонтальном направлении характеризуется барическим градиентом.
Барический градиент — изменение давления на единицу расстояния в сторону убывающего давления, в направлении, перпендикулярном изобаре. За единицу расстояния принимается длина одного градуса меридиана — 111 км. Чем больше барический градиент, тем гуще изобары.
Пользуясь величинами давления, приведенными к одному уровню (обычно к уровню Океана), составляют карты распределения давления на поверхность Земли для определенного момента или для периода времени — карты изобар.

На карте среднего многолетнего распределения давления в январе видна зона пониженного давления на экваторе (экваториальная депрессия), внутри которой над материками (особенно в южном полушарии) выделяются замкнутые области с давлением ниже 1010 мб. К северу и к югу от экваториальной депрессии располагаются зоны высокого давления, распадающиеся на замкнутые области, особенно хорошо выраженные над океанами в южном полушарии (Южно-Индийский, Южно-Тихоокеанский, Южно-Атлантический максимумы). Их разделяют области пониженного давления, возникающие над нагретыми материками. В северном полушарии барические максимумы, формирующиеся над океанами, — Северо-Атлантический (Азорский) и Северо-Тихоокеанский (Гавайский) — объединяются с обширным максимумом над Азией (Азиатский), распространяющимся на тропические, субтропические, умеренные и субполярные широты, и с максимумами над Северной Америкой (Северо-Американским и Канадским) в сплошную зону высокого давления. В умеренных и субполярных широтах северного полушария над океанами располагаются барические минимумы (Исландский и Алеутский), над материками — упомянутые выше области высокого давления (Азиатский и Канадский максимумы). Над Арктикой давление повышенное, но замкнутая область повышенного (1016 мб) давления выделяется только над Гренландией (Гренландский максимум). В умеренных и субполярных широтах южного полушария — сплошная зона низкого давления. Над Антарктидой — устойчивый, барический максимум.
В июле экваториальная зона низкого давления смещается в северное полушарие. Над материками низкое давление распространяется далеко на север, в тропические и умеренные широты северного полушария, образуя обширные летние депрессии с центрами около 30° с. ш. Северо-Атлантический и Северо-Тихоокеанский максимумы также сдвигаются к северу и усиливаются. В умеренных и субполярных широтах северного полушария значительно ослабевающие депрессии над океанами (Исландский и Алеутский минимумы) объединяются с депрессиями над материками в сплошную зону низкого давления, к северу от которой давление очень незначительно повышается.
В южном полушарии в субтропических и тропических широтах высокое давление не ограничивается тремя максимумами над океанами, а распространяется и на охлаждающиеся материки, образуя зону высокого давления. В умеренных и субтропических широтах южного полушария, так же как в январе, располагается зона низкого давления. Над Антарктидой — высокое давление.
Анализ карт изобар января и июля позволяет заметить выраженную весь год зональность в распределении давления, особенно отчетливо проявляющуюся над Океаном. Весь год существует зона пониженного давления над экватором. В субтропических широтах в течение всего года сохраняется зона высокого давления, распадающаяся на отдельные максимумы над океанами. Отчетливо видны зона пониженного давления в умеренных широтах (сплошная в южном полушарии и разделяющаяся на минимумы в северном) и зона высокого давлений над полюсами. В зависимости от сезона зоны высокого и низкого давления над Океаном смещаются к северу и к югу.

Над материками области высокого и низкого давления не только смещаются, но и изменяют по сезонам знак на обратный: на месте барического максимума возникают барические минимумы, и наоборот. Например, зимний максимум над Азией сменяется летним минимумом давления. Барические максимумы и минимумы оказывают очень большое влияние на воздушные течения, на погоду и климат, поэтому их называют центрами действия атмосферы.
Развитие атмосферных процессов над Европой, например, в огромной степени определяется влиянием таких центров атмосферного действия, как постоянные Азорский и Арктический максимумы, сезонный максимум над Азией, постоянный Исландский минимум и сезонный минимум над Азией.
Барические максимумы и минимумы нигде не сохраняются постоянно, давление непрерывно изменяется, и карты среднего многолетнего распространения его свидетельствуют только о решительном преобладании высокого или низкого давления в том или ином месте.
С помощью карт изобар можно показать распределение давления не только у поверхности Земли, но и на любой высоте над уровнем Океана, например на высоте 1,3 и 5 км. Такая карта получится при пересечении изобарических поверхностей с поверхностью соответствующего уровня.
На практике для изображения давления на высоте чаще пользуются не картами изобар, а картами барической топографии (барического рельефа), показывающими положение в пространстве той или иной изобарической поверхности, например поверхность 300, 500, 700 мб. Каждая точка изобарической поверхности находится на определенной высоте над уровнем океана, и рельеф этой поверхности, подобно рельефу поверхности Земли, можно изобразить с помощью изогипс. Высота изогипс на картах барической топографии выражается в геопотенциальных метрах (гп. м).
Карта барической топографии, на которой показано положение той или иной изобарической поверхности над уровнем Океана, называется картой абсолютной топографии и обозначается индексом AT, например АТ300 — обозначение карты абсолютной топографии поверхности 300 мб.

Составляют также карты относительной топографии — ОТ. На них наносят высоту изобарической поверхности, отсчитанную не от уровня Океана (как на картах AT), а от другой, лежащей ниже, изобарической поверхности, т. е. относительную высоту одной изобарической поверхности над другой. Например, часто составляют карты относительной высоты поверхности 500 мб над поверхностью 1000 мб (ОТ 500*1000). Относительная высота одной изобарической поверхности над другой зависит от температуры воздуха между этими поверхностями. Поэтому по карте ОТ можно судить о распределении температуры в слое воздуха между изобарическими поверхностями. Чем выше относительная высота, тем выше температура слоя атмосферы.
Карты абсолютной и относительной топографии имеют очень большое значение при изучении развития различных атмосферных процессов и широко применяются при составлении прогнозов погоды.
Сравнение карт распределения давления на уровне моря с картами абсолютной топографии показывает, что неравномерности в распределении давления у поверхности Земли с высотой постепенно сглаживаются. Чередование поясов высокого и низкого давлений исчезает. Область высокого давления расположена над экватором, к полюсам давление убывает.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *